
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 4, JULY 1995 893

A Framework for Improved
Training of Sigma-Pi Networks
Malcolm Heywood, Member, IEEE and Peter Noakes, Member, IEEE

Abstract-This paper proposes and demonstrates a framework
for Sigma-Pi networks such that the combinatorial increase in
product terms is avoided. This is achieved by only implementing
a subset of the possible product terms (sub-net Sigma-Pi). Appli-
cation of a dynamic weight pruning algorithm enables redundant
weights to be removed and replaced during the learning process,
hence permitting access to a larger weight space than employed
at network initialization. More than one learning rate is applied
to ensure that the inclusion of higher order descriptors does
not result in over description of the training set (memorization).
The application of such a framework is tested using a problem
requiring significant generalization ability. Performance of the re-
sulting sub-net Sigma-Pi network is compared to that returned by
optimal multi-layer perceptrons and general Sigma-Pi solutions.

I. INTRODUCTION
EEDFORWARD neural networks incorporating product F terms, such as the Sigma-Pi Network [I], are known to

provide inherently more powerful mapping abilities [2] than
their first-order brethren (i.e., multi-layer perceptrons (MLP)
networks). For example, the use of second-order product terms
inherently solves the EX-OR [3], [4], and clump bit (a form
of edge detector) [5] problems. More usefully, single layer
networks incorporating third-order product terms alone have
been shown to implement invariance in object classification
systems [6], [7]. In spite of these benefits, the MLP network
is much more widely applied in practical applications than the
Sigma-Pi network.

The main reason for neglecting the Sigma-Pi network lies
in a combinatorial increase in the number of product terms,
hence weights, as the number of stimuli increases [2]. Present
methods employing product terms rely on a priori knowledge
about the problem to preselect the product terms used [7],
[8]. This inherently limits the number of applications to which
Sigma-Pi networks are applied, as in most neural network
applications little knowledge exists about the solution to the
problem in question.

The aim of this paper is to suggest and demonstrate a
general framework to allow the implementation of Sigma-Pi
networks, without preempting the product terms employed or
incurring excessively large weight counts, while still exceeding
the generalization ability of MLP systems. The framework is
demonstrated by incrementally adding the components defin-

ing the framework and comparing the performance at each
stage to a MLP network using the same neural architecture.
The framework for training Sigma-Pi networks consists of
three components:

1) It provides different learning rates for each product term
order employed by the Sigma-Pi network.

2) It only implements a subset of the total number of
product terms, so avoiding excessive weight counts.

3) It includes a dynamic weight pruning (DWP) algorithm
capable of identifying and removing redundant weights
during the learning process. Once removed, higher order
(HO) terms, are replaced by HO terms not presently a
member of the weight subset.

Details of the backpropagation (BP) learning rule applied
to train Sigma-Pi networks are summarized in Section 11. The
importance of the activation range selection is emphasized
and individual learning rates for each order incorporated into
the learning rule. The dynamic weight pruning algorithm is
introduced in Section 111, which includes an overview to the
function of each component defined by the above framework.

Sections IV-VI1 sequentially incorporate the proposed
Sigma-Pi training framework, empirically demonstrating
network ability at each stage. The evaluation problem
and the performance of the standard MLP and Sigma-Pi
systems are presented in Section IV. Section V introduces
individual learning rates for each Sigma-Pi order and
discusses the resulting gains in generalization ability. The
proposed pruning framework is applied to the MLP and
general Sigma-Pi networks in Section VI. This provides
new, best-case generalization performance levels for each
network. Section VI1 introduces the sub-net implementation
for the Sigma-Pi topology, therefore making the network
practical to implement in large network topologies. The section
concludes by comparing the generalization ability for the three
network topologies (pruned MLP, pruned Sigma-Pi, and sub-
net Sigma-Pi). Finally Section VI11 summarizes the main
conclusions and indicates the directions of our current and
further research.

11. SIGMA-PI LEARNING RULE BY BACKPROPAGATION

Manuscript received July 17, 1993; revised March 10, 1994 and June 20,
1994. This work was supported by the United Kingdom Engineering and

The MLP network can be ‘Onsidered a Of the
Sigma-Pi network [l], and therefore the BP algorithm forms

Physical Sciences Research Council. the basis for deriving the Sigma-Pi learning rule [9]-[ll].
The authors are with the Department of Electronic Systems Engineering,

Universitv of Essex. Wivenhoe Park. Colchester. Essex. CO4 3SO. UK. The significance Of the activation range On the processing .I
E E E i o g Number 9409396. performed by product combinations is important. Two basic

1045-9227/95$04.00 0 1995 IEEE

894 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 4, JULY 1995

B. Backward Pass Relationships: Output Layer Error

Following evaluation of a square error objective function,
the BP node error relationship for pattern p , is defined as [l]

p z - dnet,, ay,, &etpz ‘

It may be shown that the output layer error is expressed in

1st order
routes

aEP (3) - 8EP -

product
nodes

the same manner as that of the MLP network case. Thus

I I

Fig. 1. Second order (2, 2, 1) Sigma-Pi.

ranges exist, a polarized scheme (e.g., 0 to 1) or a nonpolarized
scheme (e.g., 4~0.5). In the case of a Sigma-Pi network, a
product term will effectively solve the EX-OR problem if a
nonpolarized scheme is used; a function which traditional MLP
networks have difficulty in implementing. Product terms in
the case of a polarized scheme provide an “AND’ function; a
function easily implemented at a MLP neuron. Furthermore,
in the case of the MLP system a nonpolarized representation
has been shown to have better convergence characteristics in
terms of reliability and convergence time [12]. Therefore, the
nonpolarized scheme is employed for both MLP and Sigma-Pi
networks in this analysis.

where f’(y,i) = 0.25 - ygi for the nonpolarized configuration
employed here.

C. Backward Pass Relationships: Hidden Layer Error

As in BP, the same relationship is employed for the hidden
layer error as the output layer error estimation, (3). The partial
derivative of a node output with respect to node activation, i,
remains unchanged while the remaining partial derivative is
expanded using the chain rule in the BP manner to evaluate
S p e , the error fed back from node e in the layer following that
indexed by i.

Now, from (2), the neural inputs in this following layer are
expressed as

Hence A. Sigma-Pi Feedforward Relationship

where the only difference in the feedforward relationships is
the inclusion of extra terms within the stimuli at the receiving

(2, 2, 1) network (second order interconnects emphasized for
clarity), where the general feedforward relationship is given by

1

anet,, - The Sigma-Pi network is a generalization of the MLP,

neuron. Fig. 1 illustrates a simple Sigma-Pi structure for a

- -

‘ Q e z 3 Y P ~ f W3e23k YPJ Y P ~ + ’ ’ ‘

(5)

Finally, substituting (5) into (3) provides the required hidden
layer error backpropagation rule. (See (6) shown at the bottom
of the page.)

k 3

(1) - 0.5
y z = 1 + exp (-net,)

where D. Weight Updating

and w n i j is the weight of the nth order product for the i
destination neuron, j and IC index the product between stimuli
and 7 is the threshold applied to neuron i .

Of note is the -0.5 component in (I) which applies an
output range shift (as opposed to the input shift applied by
the neuron threshold), hence providing a nonpolarized output
over the range & - 0.5 [12].

Weight updating using the generalized delta rule is simply
the product of error at the destination node and stimuli passing
through the weight. For Sigma-Pi networks, the partial differ-
ential of node activation with respect to weight is evaluated
separately for each order the network contains. Hence, the
update rules for first to third order product terms are

(7) 1st order (MLP relationship). Ai;j = V I S,i ypj

2nd order weight change. A W 2 i j k = 772 6,i ypj y p k

3rd order weight change. A w 3 ; j k l = 773 6,i ypj Ypk ypl
(8)
(9)

through partial differentiation of (2).

HEYWOOD AND NOAKES: A FRAMEWORK FOR IMPROVED TRAINING OF SIGMA-PI NETWORKS

r - - - -

N-L r - - - - - -

STABILITY criteria satisfied ?

Yl
w

weight of LITTLE
SIGNIFICANCE to neuron ?

Yi
count of DWP criteria satistied

in iteration > DWP count
requirement ?

Y
Add weight to DWP short list I

1

895

1 -

BP Components _
I

ContinueBP)
\ - - - - / Pruning Components

Fig. 2. Dynamic weight pruning at BP update cycle.

N.B.: the 71, component represents the user selected learning
rate. It is proposed in Section V that these are specific to the
product term orders employed.

111. DYNAMIC WEIGHT PRUNING

Weight pruning algorithms typically require network con-
vergence before pruning is applied [131-[151 or that a penalty
term is included to apply a weight decay over the period of
the training cycle (e.g., [16] and [17]). This means that the
network is restricted to using these HO weights included at
initialization. The problem addressed by the authors is that of
selecting an appropriate set of HO terms during the training
cycle [18]-[20]. To do this, the point at which weightsheurons
are representative of their target state must be identified. Such
a target state is defined local to the neuron and typically will
change during the training cycle. This is the purpose of the
stability measure introduced by the authors in the context of a
simple amendment to the BP algorithm [20]. Once stability is
achieved, the significance of weights local to the target neuron
is estimated with respect to a local objective function defined
by the authors as a weight significance test. The application of

these two tests forms the basis of our dynamic weight pruning
process. Pruning following network convergence only requires
a weight significance test (cf., as in the weight saliency
measure employed by [14] and [15]), where the significance
measure at this stage is applied with respect to the global
objective function.

The Sigma-Pi learning algorithm employs three stages
during training, each with a distinct aim.

1) Dynamic weight pruning: extraction of redundant
weights with replacement of HO terms to permit the
inclusion of alternative product terms (Fig. 2).

2) Sparse network extraction: extraction of a minimal net-
work configuration. Network training is halted near
convergence and pruning is performed using the weight
significance measure alone (with respect to the global
objective function).

3) BP adaptation alone: following sparse network extrac-
tion the network structure is defined. Training continues
until the final error criteria is satisfied, typically using
a larger momentum term (this corresponds to the "re-
training" period following optimal brain damage (OBD)
pruning [14]).

896 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 4, JULY 1995

A. Stage I : Dynamic Weight Pruning

Two criteria must be satisfied before a weight can be
removed during pruning while the network is undergoing
training, Fig. 2. The first is a stability measure which is
concerned with the amount of variation weights undergo;
when changes in the network stimuli have minimal effect
on the weights local to a given neuron, these weights are
considered representative of their present target state, and
hence quantifiable against the local objective function. The
mathematical interpretation of this is in terms of the rate of
change of the weight update parameter under the influence of
the stimuli passing through the weight in question. For first
order terms this is expressed as [20]

where, Q! is the momentum term [l] and from (7)

For second order weights, two stimuli pass through the weight
giving rise to terms of the form

where, from (8)

AW2, jk =
r/z.si(t).yj(t).yl,(t)+ “ . S i . (t - l).Yj(t - l).yrc(t - 1).

Similar expressions are forthcoming for third and higher order
terms.

The result of this stability measure is that weights of a given
order, local to a specific neuron, will test positive or negative
with respect to some user specified threshold (the stability
threshold). Following satisfaction of the stability measure by
a neuron, the weight significance of each weight with respect
to the objective function is determined. During the dynamic
pruning stage, objective functions for pruning tests are applied
locally to the neuron; at sparse net extraction the global
objective function is employed. Such a distinction has more
importance when more rigorous significance measures are used
than the purely magnitude based method employed here [21],
[22]. The satisfaction of both the stability measure and the
weight significance test, is defined by the authors as satisfying
the DWP criteria.

Previously [20], the weight significance test comprised
a simple weight magnitude comparison between the actual
weight magnitude and a user specified threshold (zero weight
(ZW) threshold) representing the lowest saliency judged to be
significant. This assumes that the weights of largest magnitude
have most significance at the corresponding neuron (i.e., a
local objective function), which has been demonstrated not to
be true in all cases [14], [15].’ An alternative is to employ
a saliency measure used in a more rigorous static pruning
technique (e.g., [14] and [15]). To demonstrate a general
framework for training Sigma-Pi networks, however, applied

’ Such a condition is only true when no bias is applied to the network during
training, which by definition is not the case in this instance.

ZW threshold

ZW threshold adapt ion path

min

max error min
(x 1) (Xz)

Fig. 3. Application of adaptive zero weight threshold.

to nonbinary problems, our original weight-magnitude based
approach is employed, where the ZW threshold is adjusted
adaptively as a function of the network RMS error during the
dynamic pruning stage (within this framework we have also
applied the optimal brain surgeon weight saliency measure
[211-[231).

An adaptive ZW threshold is applied to alleviate com-
promises in selecting a specific ZW threshold, below which
all weights with a lower saliency are removed. An adaptive
ZW threshold means that when the stability threshold is first
satisfied, only those weights of least importance are selected
for pruning. This prevents too many weights being removed
too early in network evolution, reducing the network’s ability
to avoid local minima. As the RMS error reduces with network
training, the saliency severity is relaxed to allow an increase
in the degree of pruning applied. The adaptive ZW threshold
is defined by Fig. 3 and (12)

(12)

where, m = (gz - gl)/(x2 - xl)’, the parabola steepness,
y1, yp are max and min ZW threshold, respectively, and, xp, 2 1

are max and min RMS error, respectively.
Finally, some simple management controls (defined in

Fig. 4) are included to
1) limit the number of weights removed at any one neural

update, and
2) provide a weight reintroduction path (prudent, given the

simplicity of the weight significance test used).

ZW threshold=m.((present RMS error) + 21)’ + y p

B. Stage 2: Sparse Network Extraction

The aim here is to extract the most succinct network possible
before the final error criteria is satisfied. Therefore, dynamic
pruning is applied until a point is reached close to the required
minimum error which defines when the network has completed
training.

At this point the weights are assumed to be stable and
representative of their final states. Therefore, the stability
measure is no longer necessary and pruning is applied using
the weight significance parameter alone. This corresponds
to pruning using a static pruning algorithm, where pruning
continues until no more weights can be removed without
exceeding the maximum ZW threshold (y1 in Fig. 3).

C. Stage 3: BP Training with Updated Learning Parameters

With the above pruning stages completed, a network struc-
ture has been defined, and the remaining weights can be
“pushed” toward the located minima by continuing training

HEYWOOD AND NOAKES: A FRAMEWORK FOR IMPROVED TRAINING OF SIGMA-PI NETWORKS 897

from weight identitied
ea PRESENTLY set to zem

4
Inc (DWP criteria Count)

I

I RemnveWeighl -.
OHlnl s~tidks Decrement

(DWP Crileria count) -. Weicht Remnve Pcrkd ?
7---

DWP Criteria munt
PI Zem ? XI

DWP CRITERIA COUNTS

Decrement Step Size :

No DWD CntenaPatterns
No Patterns In Training Set

Increment Step Size : Unity

. .

Weight replacement

Weight re - introduction

_

Fig. 4. Secondary controls and weight re-introduction.

TABLE I
TRAINING AND TEST SET OBJECT ORIENTATIONS

Data Set

Training Set

Test Set 15" intervals

Object Orientations used in Data Set

0.60, 120, 180,240, 300

15, 30,45,75,90, 105, 135, 150. 165, 195,210, 225, 255,270, 285, 315, 330. 345

127, 163,274,85, 19,29,261, 153,246,263,322.89,341,257, 123,291, 347,259.26, 199,297.229.86, 122.
340.48, 179, 213, 2. 137

nndomintervals

with an increased momentum term. This process is typically
short in duration and is similar to the retraining stage required
following the use of static pruning algorithms.

Iv . EVALUATION TASK AND NETWORK ARCHITECTURES

The main objective is to demonstrate a framework for
training Sigma-Pi networks without incurring the combina-
torial explosion in product terms. To allow direct comparisons
between the proposed framework and standard Sigma-Pi al-
gorithm [l], [lo], [l l], however, network size has to be small
enough to allow a general implementation of the Sigma-Pi
network. Furthermore, it was desirable that a MLP network be
capable of solving the problem. These requirements provide
limits to the range of candidate problems and network size.

A. Evaluation Task and Network Topology Selection

Other research interests dictated that a rotational-invariant
object classification task be employed, such as those discussed
in [24]. For our benchmark problem, objects are described by
loo0 to 1500 pixels (approximately 64 by 64 pixel space)
and are allowed to move about a larger input space. To
limit the number of inputs "seen" by the network, central
moments are applied and normalization applied implementing
translation and scale invariance [25]-[30]. A total of seven
central moment terms are extracted, corresponding to second-
and third-order terms and form the basis of the network stimuli
(Fig. 5).

The object of the system is to correctly classify the images
into one of six classes. The test for network generalization
requires the correct classification of rotational variant objects,

Central Mument MLP I Sigma ~ PI nctrurh Binary Digitned Image Space
I I Exiracuon

Fig. 5. Movement invariant object classifier.

where training is performed using a restricted set of samples.
The network training set only contains six rotated versions
of each object taken at 60-degree intervals and no scaled or
translated versions of the objects. The test set is composed
of 18 rotated versions of each object taken at intervening 15-
degree increments with respect to the training set patterns, and
a further 30 randomly selected rotated versions of each object
(Table I). The objects employed correspond to the first six
upper case characters of the English alphabet (pixel count and
dimensions as above). This provides a good classification test
due to the similarity between letters B, E , and F . Raw moment
data is limited to a dynamic range of f0.95 by selecting the
largest magnitude term for each moment order in the test set,
and employing this as a scalar to ensure that the input range
is not exceeded. Such a scheme although simple, relies on the
data itself for variation in sign but, this does not present a
problem due to the strictly bound nature of the data set.

B. Architecture Selection

Various MLP structures with weights initialized using 20
different initializations were trained using the standard BP
learning rule (internal activation range of f0 .5 [12]) to as-

898 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 4. JUL.Y 1995

TABLE I1
MLP CLASSIFICATION ACCURACY USING STANDARD LEARNING RULE

Network Type % Correct Iterations to Leaning Rate
Classifications Convergence

7, 3.6

7,s) 6 61 - 5 2 1677 - 1162 I
7,7,6 62 - 50 1543 - 859 1

7, 10, 6 47 - 33 1096 - 1020 1

7, 3, 3,6

7, 4, 4, 6 75 - 61 I510 - 1098 0.8

7, 7,6,6 73 - 68 498 - 395 1

no convergence attained within 3000 iterations.

no convergence attained within 3000 iterations.

certain the MLP structure most suitable for the classifier.
The structures included three layer and four layer networks,
where the learning rates used ranged from 0.1 to 1.0 in 0.1
increments. Table I1 summarizes the classification performance
for each network using the test set from Table I, excluding the
randomly selected angles. The percentage of correct classifi-
cations is shown over the 20 initializations, for the learning
rate providing the best generalization ability.

From Table 11 it is evident that the (7, 4, 4, 6) network
returns the best classification performance. The (7, 7, 6, 6)
network generalization performance is similar to that of the (7,
4, 4, 6) network, but has a better convergence characteristic.
The (7, 7, 6, 6) topology also provides a better basis for
the pruning process while the (7, 4, 4, 6) is already of
a highly constrained nature. Consequently, the (7, 7, 6, 6)
network defines the architecture employed for both MLP and
Sigma-Pi networks in this paper. This biases the results in
favor of the MLP network, as the “extra” nonlinear mapping
ability of the Sigma-Pi network should mean that fewer
neurons are required by such networks. It is important to
remember, however, that the nonlinearities implemented by
product terms in real valued data sets are not the same as
those implemented in the MLP network. The nonlinearities
of MLP networks are developed through the application of
the neuron nonlinearity and its repeated nesting. Without a
nonlinear element, any MLP system can be expressed by a
perceptron relationship. Given a general Sigma-Pi network
with the same neural structure, however, the input-output
mapping provides two mechanisms for nonlinearities; nested
sigmoid functions and product combinations. Removing the
nonlinear activation function does not negate the networks
ability to perform nonlinear mappings, but does result in an
input-output relationship defined by a polynomial expansion,
where the maximum order is defined by the product of the
number of layers employed and the maximum Sigma-Pi order
(assuming the same maximum order per layer).

The effect of changing the number of neurons employed
in a general second-order Sigma-Pi network was determined
by repeating the classification task described above for a
selection of second order Sigma-Pi structures. The Sigma-
Pi network was trained using the same learning rate for each
product term order [l], [lo], [ll], but as in the MLP case,
the learning rate is allowed to range from 0.1 to 1.0 in
0.1 increments. The classification results are summarized in
Table 111. Three characteristics are immediately apparent. First,

TABLE I11
STANDARD SECOND-ORDER SIGMA-PI NETWORK PERFORMANCE

Network Type 9’0 Correct Iterations to Learning Rate
Classifications Convergence

1.3.6 SI - 3 0 540 - 320 0.60

7.5, 6 41 - 28 450 - 338 0.50

7,7.6 43 - 30 I I38 - 955 0.20

I , 10, 6 39 - 21 21.5 - 172 0.90

7. 3. 3.6 29 163 0.90

7.4.4.6 S6 - 40 318 - 187 0.80

7.7,6,6 5 1 - 3 7 153 - I12 I 00

the classification accuracy never approaches the level achieved
by the standard MLP network. Second, although the Sigma-Pi
network never reaches the generalization ability of the MLP,
the performance generally peaks for a network using a lower
neuron, hence weight count, than the peak MLP cases. Finally,
the Sigma-Pi network is trained using fewer iterations than
the MLP equivalent.

V. TRAINING GENERAL SIGMA-PI NETWORKS
USING ORDER SPECIFIC LEARNING RATES

The experiments using a general Sigma-Pi network dis-
cussed in Section IV indicate a poor level of performance
with respect to the MLP architecture irrespective of the neuron
count. Two characteristics worth emphasizing with respect to
the Sigma-Pi network solution at this point are that 1) a large
number of weights are employed and 2) learning is completed
quickly. This is the over learning characteristic often observed
in MLP networks employing too many neurons. A general
Sigma-Pi network will always have “too many” weights, so
a method is required to regulate the number of higher order
terms employed.

Within the BP framework, the rate of learning is controlled
by the learning rate parameter which dictates the amount by
which the present weight update influences the next weight
state. Present implementations of Sigma-Pi networks employ
the same learning rate across all the orders employed. As
indicated in Section IV, the inclusion of product terms provides
two mechanisms for nonlinearities within the network, where
the descriptive power of product terms increases with increas-
ing order. Consequently, the application of these nonlinearities
can only be controlled adequately using differing learning
rates and therefore, the authors propose that HO term learning
rates should be significantly lower than those for the first
order terms. This results in a bias to perform mappings using
the lowest order terms wherever possible, with the aim of
providing the most general description while avoiding over
fitting of training data.

To test this hypothesis the learning rate for first-order terms
was set to 1.0 (the previously identified optimum), and the
second-order learning rate varied between 0.1 and 2.6 using
0.2 steps. For each learning rate combination, 20 network
initializations were employed using the (7, 7, 6, 6) and (7,
4, 4, 6) architectures. Fig. 6 summarizes the minimum RMS
error for both experiments where the full test set data, Table I,

HEYWOOD AND NOAKES: A FRAMEWORK FOR IMPROVED TRAINING OF SIGMA-PI NETWORKS 899

n 2 4 , I
X

n 2 2

0 1 2 ‘
x

n i , I , I I I I I I

(1 2 0 4 0 6 0 8 I 1 2 1 4 I 6 1 8 2 0 2 2 2 4

L e a r n i n g Rate f o r 2nd Order Terms

Fig. 6.
for second order learning rate.

(7, 7, 6, 6) and (7, 4, 4, 6) Sigma-Pi network minimum RMS error

I - (7 ,7 ,6 .6) net + (7 , 4 , 4 . 6) net 1

575 I * i

c
*

0 2 0 .4 n e , 0.8 I 1 . 2 1 4 1 6 i n 2 0 2 2 2 4
Learning Rate for 2nd Order Terms

Fig. 7.
gence for second order learning rate.

(7, 7, 6, 6) and (7, 4, 4, 6) Sigma-Pi network iterations to conver-

is employed for evaluating the trained networks. Training was
stopped when a maximum error of 0.1 was returned across
training set patterns. Clearly classification accuracy is far better
when the first order learning rate is in excess of the second.
Predictably, a lower second order learning rate results in more
iterations before convergence (Fig. 7).

Optimum classification accuracy for the (7, 7, 6, 6) Sigma-
Pi network is returned when the second-order learning rate is
reduced to 0.07. This results in a peak classification accuracy
3% greater than that for the equivalent MLP case (Table
11). This also represents a 22% improvement over the best
case classification accuracy returned by the single learning
rate instance for the Sigma-Pi network (Table 111). CPU
simulation time favors the MLP system, indicating the inherent
computational overheads and much larger network size (127
weights verses 617 weights using a (7, 7, 6, 6) network)
resulting from general Si-Pi networks (Table IV).

VI. DYNAMIC WEIGHT PRUNING IN
GENERAL SIGMA-PI AND MLP NETWORKS

It is now necessary to determine whether weight pruning
results in the general Sigma-Pi network performing better than
that for the MLP. Furthermore, to speed the pruning algorithm,
the effect of permitting weights to be set to zero before they

TABLE IV
MLP AND MULTIPLE LEARNING RATE GENERAL SIGMA-PI

NETWORK PERFORMANCE FOR ROTATION INVARIANCE PROBLEM

Best Case’ Network Mean’
Topology

iterations CPU time rms error Classification
MLP 523 135 s 0.15 75 %

Siema - Pi2 257 368 s 0.12 78 %

I 20 network initialisations employed

1 st order term learning rate : 1 .O; 2nd order term learning rate : 0.07

satisfied the DWP criteria across the entire training set was
investigated using the (7, 7, 6, 6) structure identified above.

The weight pruning process of Section 111 was employed.
Table V summarizes the learning and pruning algorithm pa-
rameters used. Performance was evaluated in terms of three
different categories: Weight requirement following conver-
gence, iterations to convergence and CPU simulation time, and
network generalization ability. For the remainder of the paper,
unless otherwise indicated, the term “Sigma-Pi” network
implies the use of multiple learning rates. “General” Sigma-Pi
indicates that all the higher order weights are included, while
sub-net Sigma-Pi indicates that the number of higher order
terms per neuron is limited.

A. Weight Requirement at Convergence

There is close similarity between the total number of
weights employed for pruned MLP and pruned general
Sigma-Pi networks. Pruning removed 83% to 87% of the
weights initially employed for the general Sigma-Pi network,
hence indicating significant redundancy. In the case of the
MLP network between 18% and 39% of the weights initially
employed were removed. Following convergence, it was found
that most second-order weights were employed in the first
hidden layer, with only a few present in the output layer (true
across all network initializations).

B. Iterations to Convergence and CPU Simulation Time

Two distinct effects are demonstrated between MLP and
Sigma-Pi implementations irrespective of the DWP criteria
employed. The Sigma-Pi case always converged using far
fewer iterations (53%-58%) than the MLP case. The MLP,
however, always required less simulation time (63%-73% of
that for the Sigma-Pi case). The latter characteristic will be
due to 1) the computational overhead involved in performing
double precision floating point multiplications and 2) an in-
crease in pruning activity resulting in more calls to the random
number generator routine.

C. Network Generalization Ability

The peak performance for each network is employed as
a measure of the network generalization ability (20 network
initializations are employed for each structure). Fig. 8 depicts
the classification accuracy, for MLP and general Sigma-Pi
implementation, with and without pruning applied. In terms
of classification accuracy the MLP network provides a 79.5%

900 EEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 4. JULY 1995

TABLE V
PRUNING AND LEARNING ALGORITHM PARAMETERS

BP Parameters Dynamic Weight Pruning Parameters

Leaming Rate 1st order 1 Stability threshold (n - learning rate; x - order) (nJ2.S.10 ‘
2nd order 0.07 Adaptive ZW threshold range 0.1 - 0.9

Momentum before sparse net extraction 0.1 Max permitted DWPs per neuron per update 4

with sparse net extracted 0.4

Number of network initialisations 20

for Sparse Net extraction

Num. pattems (per iteration) over which a weight 6, 12, 18, 27, 36
must satisfy the DWP criteria before setting to

zero’

I equivalent to 16.33, SO, 75, 100% of the training set +I- 0.1s Max error

for Training completion +I- 0.1

for test set classification +I- 0.2

I .Pruned S i g PI WPruned MLP Sig Pi 0 MLP 1 .Pruned Sig Pi B P r u n e d MLP A Sig PI 0 MLP

100, I

95

5 90

3 85

-
80

c
7s

70
6 12 18 2 1 36

Patterns over which W Z criteria sat i s f ied

Fig. 8. Classification accuracy for MLP and general.

accuracy across the four higher DWP criteria (i.e., when the
weights that are set to zero satisfy the DWP criteria for greater
than 33% of the training pattern set). This represents a 4.5%
improvement above the best case MLP performance without
pruning, indicating that the network architecture is already
near optimal size.

For the general Sigma-Pi implementation with pruning, a
peak classification accuracy of 95.5% is returned when the
lowest DWP criteria is employed (16% of patterns satisfy
the DWP criteria per 36 patterns). Previously the general
Sigma-Pi network returned 78% accuracy, consequently a
17% improvement is returned.

In terms of RMS error at convergence (for the test set
data), then the best case MLP performance is returned for
a DWP criteria of half the test set patterns. All the Rh4S
errors, however, are nearly twice that for the general Sigma-
Pi network, for any of the five DWP criteria. Fig. 9 compares
the MLP and Sigma-Pi best case RMS errors as a function
of DWP criteria.

D. Summary

Comparing the general Sigma-Pi network performance for
networks trained with and without pruning results in a 14% to
74% reduction in RMS error and a 9% to 16% improvement
in classification accuracy, across the DWP criteria (Figs. 8 and
9). Also of note, however, is that there is no increase in CPU

0 1 5

0 13

e ;o 11

z
a 0 09

M

0.07 1
0 . 0 5 L

6 1 2 1 8 21 36
Patterns over which W Z criteria sat i s f ied

Fig. 9. Rh4S error for MLP and general.

TABLE VI
SECOND ORDER TERM LEARNING RATES

FOR SUB-NET SIGMA-PI NETWORK COUNTS.

Max number of 2nd order terms
per neuron

2nd order term Leaming Rate

14 (55%’.)

7 (27%’)

3 (12%1)

0. IO

0.15

0.20

’ % of second order weights included throughout network.

time for either Sigma-Pi or MLP performance following the
introduction of the pruning algorithm.

VII. DYNAMIC WEIGHT PRUNING
IN SUB-NET SIGMA-PI NETWORKS

In this section the effect of only implementing a subset of
the second-order weights in the Sigma-Pi network is evaluated
(referred to as a sub-net Sigma-Pi network). This effectively
makes the Sigma-Pi network practical to implement by limit-
ing the number of higher order products employed. The effect
of using 55%, 27% and 12% of the total second-order weight
count is investigated (this corresponds to 14, seven and three
second-order products per neuron). Following this reduction
in the number of second-order weights employed it was found
necessary to change the “optimal” learning rate for second-
order terms (Table VI). All other learning parameters remained
unchanged (Table V).

HEYWOOD AND NOAKES: A FRAMEWORK FOR IMPROVED TRAINING OF SIGMA-PI NETWORKS 901

TABLE VI1
COMPARISON BETWEEN SECOND ORDER TERM WEIGHT COUNTS

2nd order term limit per neuron 2nd order weight count at
convergence wrt pruned General

Siema - Pi net solution

3 weights I neuron

7 weights I neuron

14 weights I neuron

87 %

148 %

143 %

A. Weight Requirement at Convergence

Sub-Net Sigma-Pi Performance: There is no significant
variation between the weight counts returned by second-
order weight limits of seven and 14 (97 weights typical).
The second-order weight limit of three weights per neuron
returns typically 90 weights, an 8% reduction in weight count
with respect to the higher second order weight limits. As
in the general Sigma-Pi case the majority of second-order
weights included are contained within inputs to the first
hidden layer.

Comparison to General Sigma-Pi Network Performance: In
terms of second order weights alone, Table VI1 indicates
the mean weight counts taken across all simulations and
normalized to the general Sigma-Pi network second order
weight count. This shows that a tendency exists to include
more second order terms by the sub-net implementation.

B. Iterations to Convergence and CPU Simulation Time

Given the previous observations regarding computational
requirements, it is not surprising that sub-net implementations
use more iterations to converge, but simulate faster than the
general Sigma-Pi network. Table VI11 illustrates this effect
by comparing the CPU time and iterations to convergence
for pruned MLP, general Sigma-Pi, and the three sub-net
Sigma-Pi networks. The comparison is performed using the
mean figures for each network and averaging across the
five DWP criteria. Table VI11 also contrasts the increase
in CPU time and iterations to convergence with respect to
the best case network performance, across the five network
topologies.

C. Network Generalization Ability

The classification accuracy returned by the sub-net Sigma-
Pi network employing a limit of three second-order terms,
only achieved the level set by the pruned MLP system (i.e.,
79.5% for DWP criteria greater or equal to 12). Likewise this
is generally true for the RMS error attained for the test data.
Consequently, under the present weight significance test, this
sub-Net Sigma-Pi implementation has failed to improve on
the best case MLP performance.

When limited to seven second-order terms, the classification
accuracy betters that of the MLP system, peaking at 87.5% for
the 18 DWP case (Fig. 10). At this second-order term limit the
RMS error for the test set is generally half that of the pruned
MLP network (Fig. 11). The sub-net Sigma-Pi network with
a limit of 14 second order terms also betters the pruned MLP
cases (Figs. 10 and 11).

1 a ~ 6 c r i t 0 IZcrit * 1 8 c r i t 3 - 2 7 c r i t Q 3 6 c r i t 1

I
Gen Sig PI Sub Sig 14 Sub Sig 7 Sub Sig 3 MLP

N e t w o r k

Fig. 10. Pruned MLP, general and sub-net Sigma-Pi classification accuracy.

I - - 6 c r i t 0 1 2 c r i t * 1 8 c r i t 9 - 2 7 c r i t Q 3 6 c r i t I

0 155

0 1 3 5

2
O O 1 1 5

3
5 0 0 9 5

E

0 0 7 5

0 0 5 5 5
Gen Sig PI S u b Sig 14 Sub Sig 7 Sub Sig 3 MLP

Network

Fig. 11. Pruned MLP, general and sub-net Sigma-Pi RMS error.

D. Summary

The sub-net Sigma-Pi cases do not reach the level of peak
generalization performance attained by the pruned General
Sigma-Pi implementation (Figs. 10 and 11 compare all three
networks). The sub-net implementation, however, does provide
a useful performance increase above that returned by the
pruned MLP configuration. Furthermore, the sub-net case
makes the implementation of product terms, where no a
priori knowledge exists, a practical proposition in terms of
initial network size (266 and 133 weights for the 14 and 7
second order term sub-net implementations, respectively, as
opposed to 617 weights in the general Sigma-Pi network)
and simulation time (Table VIII). Better performance can be
demonstrated for low HO weight restrictions by performing a
directed product term search [21]-[23].

VIII. CONCLUSION

This paper presents a framework for training Sigma-Pi net-
works for nonbinary problems, where no a priori knowledge
exists about the product terms required and without employing
excessively large weight counts (the "traditional" reason for
ignoring Sigma-Pi networks). This approach is summarized
by the following set of recommendations:

1) Use a nonpolarized product term equalization.
2) Use order specific learning rates.

902 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 4, JULY 1995

TABLE VIII
CPU AND ITERATIONS REQUIREMENT FOR THE THREE NETWORK STRUCTURES

Network Type CPU Simulation Time Iterations to Convergence

Time (mean) difference wrt increase wrt MLP iterations (mean) difference wrt increase wrf
MLP Gen. Sigma - Pi Gen. Sigma - Pi

Pruned MLP 137 s reference reference 546 + 250 84 %

Pruned General Sigma - Pi 353 s + 216 s 158 % 296 reference reference

Sub-Net Sigma-Pi : 14 terms 2.51 s + 114s 83 % 310 + 14 5 Yo

Sub-Net Sigma-Pi : 7 terms 197 s + 6 0 s 44 % 363 + 67 26 %

Sub-Net Sigma-Pi : 3 terms 147 s + 1 0 s 7 % 382 + 86 29 %

Implement a subset of the total available product terms.
Employ a dynamic weight pruning algorithm to re-
move redundant weights, where the higher order terms
removed are then replaced by terms not presently avail-
able.
Extract a sparsely connected network using nondynamic
pruning, as convergence approaches.
Alter momentum and learning rate as required at sparse
network extraction, then complete training using BP
alone.

As a consequence of the different nonlinear mapping mech-
anisms available, it has been shown that differing learning
rates are necessary to control the rate of learning for each order
employed. A drawback from employing multiple learning rates
is that the selection of such terms is a nontrivial problem
(here exhaustive simulation could be applied, which is not
a practical proposition for large problems). Although as a rule
of thumb, to return solutions biased toward the most simple
solution, learning rates of HO terms should approximately
be an order of magnitude lower than that for first order
terms.

To implement higher order systems without employing a
priori knowledge about the problem, a randomly selected
subset of the higher order weights is used. To employ a
larger set of weights than defined by the initial random
selection, redundant weights must be identified and replaced
by alternative terms during the learning process. This is the
function of the dynamic weight pruning framework which
is based on two fundamental measures. The first identifies
stability, the second weight significance. The stability measure
is necessary to determine when the weight values, hence the
neuron state, is representative of the present neural target
function, as defined by the training process (this state may
be transient in nature as the learning cycle progresses). The
second, weight significance, identifies how significant a weight
is to the objective function (local during DWP, global at sparse
network extraction).

The performance returned by the framework falls between
that of the fully interconnected Sigma-Pi network, trained with
pruning, and the optimally pruned MLP network. Significant
reductions in the initial Sigma-Pi network requirements are
demonstrated when using the sub-net implementation. This
reduction in weight count results in faster simulation times
for the sub-net Sigma-Pi implementation with respect to the
fully interconnected version. Finally the classification ability

demonstrated by the sub-net implementation is between that
of the MLP and general Sigma-Pi networks.

It should be recognized that the definition of our stability
measure has an inherent disadvantage in selectivity when
weights are replaced. The most recently introduced weights
will have a smaller adaptation period than those present from
initialization. Consequently, such terms are most likely to be
removed should the neuron be re-selected for weight removal.
This can be avoided by increasing the selectivity of the
stability test to that of each weight by employing individual
learning rates for each weight [18], 1311. Such a scheme,
however, will introduce further user defined parameters (e.g.,
permitted range of learning rate variation) and generally make
the weight significance estimation more difficult. A better
approach, following identification of a redundant product term,
would be to avoid perturbing the error surface altogether. To
this end replacement product terms are incorporated by

1) Selecting the best fitting product term from a pool of
candidates.

2) Initializing the weight and any neural threshold update,
so as to minimize the local objective function (i.e.,
backpropagated error).

/

3) Testing for over fitting of the training set.
Such a system has been developed by the authors, as has the
incorporation of an OBS weight significance test, within the
dynamic weight pruning context [21]-[23]. Further evaluation
of the framework performance is currently underway, with
extensions to the framework for increasing complexity from a
minimal MLP configuration as the network is trained.

REFERENCES

D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing,
Explorations in the Macrostructure of Cognition., vol. 1 . Cambridge,
MA: MlT Press, 1986.
M. L. Minsky and S. Papert, Perceptrons. Cambridge, MA: MIT Press,
1969.
C. L. Giles and T. Maxwell, “Learning, invariance and generalization
in high-order neural networks,” Appl. Optics, vol. 26, no. 23, pp.
4972-4978, Dec. 1987.
M. I. Heywood, Univ. Essex, Dep. Electronic Syst. Eng., internal
progress rep. 1, 1992.
T. Maxwell, C. L. Giles, and Y. C. Lee, “Generalization in neural
networks: The contiguity problem,” in Proc. Zst IEEE ZJCNN, vol. 2,
1987, pp. 41-46.
T. Maxwell and C. L. Giles, “Transformation invariance using high-
order correlations in neural net architectures,” in Proc. ZEEE Int. Conf:
Syst., Man Cybem., 1986, pp. 627432 .
L. Spirkovska and M. B. Reid, “Coarse-coded higher-order neural
networks for PSRI object recognition,” IEEE Trans. Neural Networks,
vol. 4, no. 2, pp. 276-283, Mar. 1993.

HEYWOOD AND NOAKES: A FRAMEWORK FOR IMPROVED TRAINING OF SIGMA-PI NETWORKS 903

[8] R. W. Duren, “Efficient second order neural network architecture for
orientation invariant character recognition,” Ph.D. dissertation, Southern
Methodist Univ., Dallas, TX, 1991.

[91 M. I. Heywood, Univ. Essex, Den Electronic Svst. Eng., intemal
progress report 2, Sep. 1992.

[IO] C. H. Chang and J. Y. Chaung, “Backpropagation algorithm in higher
order neural network,” in Proc. IEEE IJCNN, Baltimore, vol. 3 , 1992,
p. 551.

[l 11 H. Yang and C. C. Guest, “Higher order neural networks with reduced
numbers of interconnection weights,” in Proc. IEEE IJCNN, vol. 3, June

[12] V. S . Stometta and B. A. Hubermann, “An improved three-layer
backpropagation algorithm,” in Proc. IEEE IJCNN, vol. 2, 1987, pp.
637-643.

[13] M. C. Monzer and P. Smolensky, “Skeletonisation: A technique for
trimming the fat from a network via reliance assessment,” in Advances
in Neural Network Information Processing Systems. San Mateo, CA:
Morgan Kaufmann, 1989, pp. 107-1 15.

[I41 Y. Le Cun, J. S. Denker, and S. A. Solla, ”Optimal brain damage,” Ad-
vances in Neural Information Processina Svstems. vol. 2. San Mateo.

1991, pp. 281-286.

CA: Morgan Kaufmann, 1990, pp. 5981605.
B. Hassibi, D. G. Stork, and G. J. Wolff, “Optimal brain surgeon and
general network pruning,’’ in Proc. IEEE ICNN, San Francisco, vol. 1,
1993, pp. 293-299.
S. J. Hanson and L. Y. Pratt, “Comparing basis for minimal network
construction with back propagation,” in Advances in Neural Information
Processing Systems, vol. 1. San Mateo, CA: Morgan Kaufmann, 1989,
pp. 177-185.
A. S. Weigand, D. E. Rumelhart, and B. A. Huberman, “Generalization
by weight elimination with application to forecasting,” Advances in Neu-
ral Information Processing Systems, vol. 3 . San Mateo, CA: Morgan
Kaufmann, 1991, pp. 875-882.
H. Qin and Z. He, “Variable step BP algorithm which prunes away
redundant connections dvnamicallv,” in Proc. IEEE IJCNN. vol. 2. Nov.
1992, pp. 441444.

[19] S. Stalin and T. V. Sreenias, “Vectorised backpropagation and automatic
pruning for MLP network optimization,’’ in Proc. IEEE ICNN, San
Fransisco, vol. 3, Mar. 1993, pp. 1427-1432.

[20] M. I. Heywood and P. D. Noakes, “Simple addition to backpropagation
learning for dynamic weight pruning, sparse network extraction and
faster learning,” in Proc. IEEE ICNN, San Francisco, vol. 2, Mar. 1993,
pp. 6 2 M 2 5 .

[21] -, “Directed product term selection in Sigma-Pi networks,” in
Proc. IEEE ICNN, Orlando, 1994.

[22] -, “Product term selection in a Sigma-Pi framework,” Univ. Essex,
Dep. Electronic Syst. Eng., Report No. heywm2, Dec. 1993.

[23] M.I. Heywood, “A Practical Framework for Training Sigma-Pi Net-
works with an Application in Rotational Invariant Object Recognition,”
Ph.D. dissertation, Dept. Elec. Syst. Eng., Univ. Essex, Colchester, UK,
1994.

[241 D. S. Yang, J. H. Garrett, and D. S. Shaw, “A comparative study
of neural networks that can perform transformation invariant pattern
recognition,” in Proc. IEEE IJCNN, Beijing, vol. 1, 1992, pp. 664469.

New
York Wiley, 1989.

[25] R. J. Schalkoff, Digital Image Processing and Computer Vision.

[26] M.-K. Hu, “Visual pattern recognition by moment invariants,” IRE
Trans. Information Theory, vol. 8, no. 2, pp. 179-189, Feb. 1962.

[27] P. Raveendran, S. Omatu, and W. W. Yue, “Performance of generated
moments by neural network to recognize invariant image representa-
tion,” in Proc. IEEE IJCNN, Beijing, vol. 1, 1992, pp. 6 8 M 9 4 .

[28] M. R. Teague, “Image analysis via the general theory of moments,” J.
Optical Soc. Amer., vol. 70, no. 8, pp. 920-930., Aug. 1980.

[29] A. Khotanzad and J.-H. Lu, “Classification of invariant image represen-
tations using a neural network,” IEEE Trans. Acoustics, Speech Signal
Process., vol. 38, no. 6, pp. 1028-1038, June 1990.

[30] C.-H. Teh and R. T. Chin, “On image analysis by the methods of
moments,” IEEE Trans. Pattern Anal. Machine Intell., vol. 10, no. 4,
pp. 496-512, July 1988.

[31] A. Estevez Pablo, Okabe Yoichi, “Training the piecewise linear higher
order neural network through error backpropagation,” in Proc. IEEE
IJCNN, Singapore, vol. 1, 1991, pp. 711-716.

Malcolm Heywood (S’94-M’95) received the
B.Eng. degree in electrical and electronic engi-
neering at Polytechnic South West, Plymouth, UK
(now University of Plymouth) in 1990, and the
Ph.D. degree in neural network system design at
the VLSI Research Group at the University of
Essex, Colchester, UK, in 1994.

Following a year working at Racal Radar Defence
Systems (Leicester) Ltd he joined the Neural and
VLSI Research Group at the University of Essex
in 1991. His current research interests include time

series analysis, optimization techniques and nonparametric modeling methods.
Dr. Heywood is an Associate Member of the IEE.

Peter Noakes (M’94) received the B.Sc. degree
from Queen Mary College, University of London
in 1967.

From 1967 to 1971 he worked with the Marconi
Company in Chelmsford, UK before joining the
Department of Electronic Systems Engineering at
the University of Essex, where he is now a Senior
Lecturer. His research interests include artificial
neural networks, signal processing, VLSI digital
system design, the application of FPGA’s and com-
puter based learning.

Mr. Noakes has contributed to over 50 conference and joumal publications.
He has been on the organizing committees of a number of International FPGA
Workshops. He is a member of the IEEE Systems, Man and Cybernetics
Society and the IEEE Computer Society. He is also a Chartered Engineer,
a Member of the Institution of Electrical Engineers (IEE) and the European
Neural Network Society (ENNS).

