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Abstract-This paper proposes and demonstrates a framework 
for Sigma-Pi networks such that the combinatorial increase in 
product terms is avoided. This is achieved by only implementing 
a subset of the possible product terms (sub-net Sigma-Pi). Appli- 
cation of a dynamic weight pruning algorithm enables redundant 
weights to be removed and replaced during the learning process, 
hence permitting access to a larger weight space than employed 
at network initialization. More than one learning rate is applied 
to ensure that the inclusion of higher order descriptors does 
not result in over description of the training set (memorization). 
The application of such a framework is tested using a problem 
requiring significant generalization ability. Performance of the re- 
sulting sub-net Sigma-Pi network is compared to that returned by 
optimal multi-layer perceptrons and general Sigma-Pi solutions. 

I. INTRODUCTION 
EEDFORWARD neural networks incorporating product F terms, such as the Sigma-Pi Network [I], are known to 

provide inherently more powerful mapping abilities [2] than 
their first-order brethren (i.e., multi-layer perceptrons (MLP) 
networks). For example, the use of second-order product terms 
inherently solves the EX-OR [3], [4], and clump bit (a form 
of edge detector) [ 5 ]  problems. More usefully, single layer 
networks incorporating third-order product terms alone have 
been shown to implement invariance in object classification 
systems [6], [7]. In spite of these benefits, the MLP network 
is much more widely applied in practical applications than the 
Sigma-Pi network. 

The main reason for neglecting the Sigma-Pi network lies 
in a combinatorial increase in the number of product terms, 
hence weights, as the number of stimuli increases [2]. Present 
methods employing product terms rely on a priori knowledge 
about the problem to preselect the product terms used [7], 
[8]. This inherently limits the number of applications to which 
Sigma-Pi networks are applied, as in most neural network 
applications little knowledge exists about the solution to the 
problem in question. 

The aim of this paper is to suggest and demonstrate a 
general framework to allow the implementation of Sigma-Pi 
networks, without preempting the product terms employed or 
incurring excessively large weight counts, while still exceeding 
the generalization ability of MLP systems. The framework is 
demonstrated by incrementally adding the components defin- 

ing the framework and comparing the performance at each 
stage to a MLP network using the same neural architecture. 
The framework for training Sigma-Pi networks consists of 
three components: 

1) It provides different learning rates for each product term 
order employed by the Sigma-Pi network. 

2) It only implements a subset of the total number of 
product terms, so avoiding excessive weight counts. 

3) It includes a dynamic weight pruning (DWP) algorithm 
capable of identifying and removing redundant weights 
during the learning process. Once removed, higher order 
(HO) terms, are replaced by HO terms not presently a 
member of the weight subset. 

Details of the backpropagation (BP) learning rule applied 
to train Sigma-Pi networks are summarized in Section 11. The 
importance of the activation range selection is emphasized 
and individual learning rates for each order incorporated into 
the learning rule. The dynamic weight pruning algorithm is 
introduced in Section 111, which includes an overview to the 
function of each component defined by the above framework. 

Sections IV-VI1 sequentially incorporate the proposed 
Sigma-Pi training framework, empirically demonstrating 
network ability at each stage. The evaluation problem 
and the performance of the standard MLP and Sigma-Pi 
systems are presented in Section IV. Section V introduces 
individual learning rates for each Sigma-Pi order and 
discusses the resulting gains in generalization ability. The 
proposed pruning framework is applied to the MLP and 
general Sigma-Pi networks in Section VI. This provides 
new, best-case generalization performance levels for each 
network. Section VI1 introduces the sub-net implementation 
for the Sigma-Pi topology, therefore making the network 
practical to implement in large network topologies. The section 
concludes by comparing the generalization ability for the three 
network topologies (pruned MLP, pruned Sigma-Pi, and sub- 
net Sigma-Pi). Finally Section VI11 summarizes the main 
conclusions and indicates the directions of our current and 
further research. 

11. SIGMA-PI LEARNING RULE BY BACKPROPAGATION 
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B. Backward Pass Relationships: Output Layer Error 

Following evaluation of a square error objective function, 
the BP node error relationship for pattern p ,  is defined as [l] 

p z -  dnet,, ay,, &etpz ‘ 

It may be shown that the output layer error is expressed in 

1st order 
routes 

aEP (3)  - 8EP - 

product 
nodes 

the same manner as that of the MLP network case. Thus 

I I 

Fig. 1. Second order (2, 2,  1) Sigma-Pi. 

ranges exist, a polarized scheme (e.g., 0 to 1) or a nonpolarized 
scheme (e.g., 4~0.5). In the case of a Sigma-Pi network, a 
product term will effectively solve the EX-OR problem if a 
nonpolarized scheme is used; a function which traditional MLP 
networks have difficulty in implementing. Product terms in 
the case of a polarized scheme provide an “AND’ function; a 
function easily implemented at a MLP neuron. Furthermore, 
in the case of the MLP system a nonpolarized representation 
has been shown to have better convergence characteristics in 
terms of reliability and convergence time [12]. Therefore, the 
nonpolarized scheme is employed for both MLP and Sigma-Pi 
networks in this analysis. 

where f’(y,i) = 0.25 - ygi for the nonpolarized configuration 
employed here. 

C. Backward Pass Relationships: Hidden Layer Error 

As in BP, the same relationship is employed for the hidden 
layer error as the output layer error estimation, (3). The partial 
derivative of a node output with respect to node activation, i, 
remains unchanged while the remaining partial derivative is 
expanded using the chain rule in the BP manner to evaluate 
S p e ,  the error fed back from node e in the layer following that 
indexed by i. 

Now, from (2), the neural inputs in this following layer are 
expressed as 

Hence A.  Sigma-Pi Feedforward Relationship 

where the only difference in the feedforward relationships is 
the inclusion of extra terms within the stimuli at the receiving 

(2, 2, 1) network (second order interconnects emphasized for 
clarity), where the general feedforward relationship is given by 

1 

anet,, - The Sigma-Pi network is a generalization of the MLP, 

neuron. Fig. 1 illustrates a simple Sigma-Pi structure for a 

- - 

‘ Q e z 3  Y P ~  f W3e23k YPJ Y P ~  + ’ ’ ‘  

( 5 )  

Finally, substituting ( 5 )  into (3) provides the required hidden 
layer error backpropagation rule. (See (6) shown at the bottom 
of the page.) 

k 3  

(1) - 0.5 
y z  = 1 + exp (-net,) 

where D. Weight Updating 

and w n i j  is the weight of the nth order product for the i 
destination neuron, j and IC index the product between stimuli 
and 7 is the threshold applied to neuron i .  

Of note is the -0.5 component in (I)  which applies an 
output range shift (as opposed to the input shift applied by 
the neuron threshold), hence providing a nonpolarized output 
over the range & - 0.5 [12]. 

Weight updating using the generalized delta rule is simply 
the product of error at the destination node and stimuli passing 
through the weight. For Sigma-Pi networks, the partial differ- 
ential of node activation with respect to weight is evaluated 
separately for each order the network contains. Hence, the 
update rules for first to third order product terms are 

(7) 1st order (MLP relationship). Ai;j = V I  S,i ypj  

2nd order weight change. A W 2 i j k  = 772 6,i ypj  y p k  

3rd order weight change. A w 3 ; j k l =  773 6,i ypj Ypk ypl 
(8) 
(9) 

through partial differentiation of (2). 
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Fig. 2. Dynamic weight pruning at BP update cycle. 

N.B.: the 71, component represents the user selected learning 
rate. It is proposed in Section V that these are specific to the 
product term orders employed. 

111. DYNAMIC WEIGHT PRUNING 

Weight pruning algorithms typically require network con- 
vergence before pruning is applied [ 131-[ 151 or that a penalty 
term is included to apply a weight decay over the period of 
the training cycle (e.g., [16] and [17]). This means that the 
network is restricted to using these HO weights included at 
initialization. The problem addressed by the authors is that of 
selecting an appropriate set of HO terms during the training 
cycle [18]-[20]. To do this, the point at which weightsheurons 
are representative of their target state must be identified. Such 
a target state is defined local to the neuron and typically will 
change during the training cycle. This is the purpose of the 
stability measure introduced by the authors in the context of a 
simple amendment to the BP algorithm [20]. Once stability is 
achieved, the significance of weights local to the target neuron 
is estimated with respect to a local objective function defined 
by the authors as a weight significance test. The application of 

these two tests forms the basis of our dynamic weight pruning 
process. Pruning following network convergence only requires 
a weight significance test (cf., as in the weight saliency 
measure employed by [14] and [15]), where the significance 
measure at this stage is applied with respect to the global 
objective function. 

The Sigma-Pi learning algorithm employs three stages 
during training, each with a distinct aim. 

1) Dynamic weight pruning: extraction of redundant 
weights with replacement of HO terms to permit the 
inclusion of alternative product terms (Fig. 2). 

2) Sparse network extraction: extraction of a minimal net- 
work configuration. Network training is halted near 
convergence and pruning is performed using the weight 
significance measure alone (with respect to the global 
objective function). 

3) BP adaptation alone: following sparse network extrac- 
tion the network structure is defined. Training continues 
until the final error criteria is satisfied, typically using 
a larger momentum term (this corresponds to the "re- 
training" period following optimal brain damage (OBD) 
pruning [14]). 
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A. Stage I :  Dynamic Weight Pruning 

Two criteria must be satisfied before a weight can be 
removed during pruning while the network is undergoing 
training, Fig. 2. The first is a stability measure which is 
concerned with the amount of variation weights undergo; 
when changes in the network stimuli have minimal effect 
on the weights local to a given neuron, these weights are 
considered representative of their present target state, and 
hence quantifiable against the local objective function. The 
mathematical interpretation of this is in terms of the rate of 
change of the weight update parameter under the influence of 
the stimuli passing through the weight in question. For first 
order terms this is expressed as [20] 

where, Q! is the momentum term [l] and from (7) 

For second order weights, two stimuli pass through the weight 
giving rise to terms of the form 

where, from (8) 

AW2, jk  = 
r/z.si(t).yj(t).yl,(t)+ “ . S i . ( t  - l).Yj(t - l).yrc(t - 1). 

Similar expressions are forthcoming for third and higher order 
terms. 

The result of this stability measure is that weights of a given 
order, local to a specific neuron, will test positive or negative 
with respect to some user specified threshold (the stability 
threshold). Following satisfaction of the stability measure by 
a neuron, the weight significance of each weight with respect 
to the objective function is determined. During the dynamic 
pruning stage, objective functions for pruning tests are applied 
locally to the neuron; at sparse net extraction the global 
objective function is employed. Such a distinction has more 
importance when more rigorous significance measures are used 
than the purely magnitude based method employed here [21], 
[22]. The satisfaction of both the stability measure and the 
weight significance test, is defined by the authors as satisfying 
the DWP criteria. 

Previously [20], the weight significance test comprised 
a simple weight magnitude comparison between the actual 
weight magnitude and a user specified threshold (zero weight 
(ZW) threshold) representing the lowest saliency judged to be 
significant. This assumes that the weights of largest magnitude 
have most significance at the corresponding neuron (i.e., a 
local objective function), which has been demonstrated not to 
be true in all cases [14], [15].’ An alternative is to employ 
a saliency measure used in a more rigorous static pruning 
technique (e.g., [14] and [15]). To demonstrate a general 
framework for training Sigma-Pi networks, however, applied 

’ Such a condition is only true when no bias is applied to the network during 
training, which by definition is not the case in this instance. 

ZW threshold 

ZW threshold adapt ion path 

min 

max error min 
(x 1) (Xz) 

Fig. 3. Application of adaptive zero weight threshold. 

to nonbinary problems, our original weight-magnitude based 
approach is employed, where the ZW threshold is adjusted 
adaptively as a function of the network RMS error during the 
dynamic pruning stage (within this framework we have also 
applied the optimal brain surgeon weight saliency measure 
[211-[231). 

An adaptive ZW threshold is applied to alleviate com- 
promises in selecting a specific ZW threshold, below which 
all weights with a lower saliency are removed. An adaptive 
ZW threshold means that when the stability threshold is first 
satisfied, only those weights of least importance are selected 
for pruning. This prevents too many weights being removed 
too early in network evolution, reducing the network’s ability 
to avoid local minima. As the RMS error reduces with network 
training, the saliency severity is relaxed to allow an increase 
in the degree of pruning applied. The adaptive ZW threshold 
is defined by Fig. 3 and (12) 

(12) 

where, m = (gz - gl)/(x2 - xl)’, the parabola steepness, 
y1, yp are max and min ZW threshold, respectively, and, xp, 2 1  

are max and min RMS error, respectively. 
Finally, some simple management controls (defined in 

Fig. 4) are included to 
1) limit the number of weights removed at any one neural 

update, and 
2) provide a weight reintroduction path (prudent, given the 

simplicity of the weight significance test used). 

ZW threshold=m.((present RMS error) + 21)’  + y p  

B. Stage 2: Sparse Network Extraction 

The aim here is to extract the most succinct network possible 
before the final error criteria is satisfied. Therefore, dynamic 
pruning is applied until a point is reached close to the required 
minimum error which defines when the network has completed 
training. 

At this point the weights are assumed to be stable and 
representative of their final states. Therefore, the stability 
measure is no longer necessary and pruning is applied using 
the weight significance parameter alone. This corresponds 
to pruning using a static pruning algorithm, where pruning 
continues until no more weights can be removed without 
exceeding the maximum ZW threshold (y1 in Fig. 3). 

C. Stage 3: BP Training with Updated Learning Parameters 

With the above pruning stages completed, a network struc- 
ture has been defined, and the remaining weights can be 
“pushed” toward the located minima by continuing training 
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Fig. 4. Secondary controls and weight re-introduction. 

TABLE I 
TRAINING AND TEST SET OBJECT ORIENTATIONS 

Data Set 

Training Set 

Test Set 15" intervals 

Object Orientations used in Data Set 

0.60, 120, 180,240, 300 

15, 30,45,75,90,  105, 135, 150. 165, 195,210, 225, 255,270, 285, 315, 330. 345 

127, 163,274,85, 19,29,261, 153,246,263,322.89,341,257, 123,291, 347,259.26, 199,297.229.86, 122. 
340.48, 179, 213, 2. 137 

nndomintervals 

with an increased momentum term. This process is typically 
short in duration and is similar to the retraining stage required 
following the use of static pruning algorithms. 

Iv .  EVALUATION TASK AND NETWORK ARCHITECTURES 

The main objective is to demonstrate a framework for 
training Sigma-Pi networks without incurring the combina- 
torial explosion in product terms. To allow direct comparisons 
between the proposed framework and standard Sigma-Pi al- 
gorithm [l], [lo], [ l  l], however, network size has to be small 
enough to allow a general implementation of the Sigma-Pi 
network. Furthermore, it was desirable that a MLP network be 
capable of solving the problem. These requirements provide 
limits to the range of candidate problems and network size. 

A. Evaluation Task and Network Topology Selection 

Other research interests dictated that a rotational-invariant 
object classification task be employed, such as those discussed 
in [24]. For our benchmark problem, objects are described by 
loo0 to 1500 pixels (approximately 64 by 64 pixel space) 
and are allowed to move about a larger input space. To 
limit the number of inputs "seen" by the network, central 
moments are applied and normalization applied implementing 
translation and scale invariance [25]-[30]. A total of seven 
central moment terms are extracted, corresponding to second- 
and third-order terms and form the basis of the network stimuli 
(Fig. 5). 

The object of the system is to correctly classify the images 
into one of six classes. The test for network generalization 
requires the correct classification of rotational variant objects, 

Central Mument MLP I Sigma ~ PI nctrurh Binary Digitned Image Space 
I I Exiracuon 

Fig. 5. Movement invariant object classifier. 

where training is performed using a restricted set of samples. 
The network training set only contains six rotated versions 
of each object taken at 60-degree intervals and no scaled or 
translated versions of the objects. The test set is composed 
of 18 rotated versions of each object taken at intervening 15- 
degree increments with respect to the training set patterns, and 
a further 30 randomly selected rotated versions of each object 
(Table I). The objects employed correspond to the first six 
upper case characters of the English alphabet (pixel count and 
dimensions as above). This provides a good classification test 
due to the similarity between letters B,  E ,  and F .  Raw moment 
data is limited to a dynamic range of f0.95 by selecting the 
largest magnitude term for each moment order in the test set, 
and employing this as a scalar to ensure that the input range 
is not exceeded. Such a scheme although simple, relies on the 
data itself for variation in sign but, this does not present a 
problem due to the strictly bound nature of the data set. 

B. Architecture Selection 

Various MLP structures with weights initialized using 20 
different initializations were trained using the standard BP 
learning rule (internal activation range of f0 .5  [12]) to as- 
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TABLE I1 
MLP CLASSIFICATION ACCURACY USING STANDARD LEARNING RULE 

Network Type % Correct Iterations to Leaning Rate 
Classifications Convergence 

7, 3.6 

7,s) 6 61 - 5 2  1677 - 1162 I 
7,7,6 62 - 50 1543 - 859 1 

7, 10, 6 47 - 33 1096 - 1020 1 

7, 3, 3,6 

7, 4, 4, 6 75 - 61 I510 - 1098 0.8 

7, 7,6,6 73 - 68 498 - 395 1 

no convergence attained within 3000 iterations. 

no convergence attained within 3000 iterations. 

certain the MLP structure most suitable for the classifier. 
The structures included three layer and four layer networks, 
where the learning rates used ranged from 0.1 to 1.0 in 0.1 
increments. Table I1 summarizes the classification performance 
for each network using the test set from Table I, excluding the 
randomly selected angles. The percentage of correct classifi- 
cations is shown over the 20 initializations, for the learning 
rate providing the best generalization ability. 

From Table 11 it is evident that the (7, 4, 4, 6) network 
returns the best classification performance. The (7, 7, 6, 6) 
network generalization performance is similar to that of the (7, 
4, 4, 6) network, but has a better convergence characteristic. 
The (7, 7, 6, 6) topology also provides a better basis for 
the pruning process while the (7, 4, 4, 6) is already of 
a highly constrained nature. Consequently, the (7, 7, 6, 6) 
network defines the architecture employed for both MLP and 
Sigma-Pi networks in this paper. This biases the results in 
favor of the MLP network, as the “extra” nonlinear mapping 
ability of the Sigma-Pi network should mean that fewer 
neurons are required by such networks. It is important to 
remember, however, that the nonlinearities implemented by 
product terms in real valued data sets are not the same as 
those implemented in the MLP network. The nonlinearities 
of MLP networks are developed through the application of 
the neuron nonlinearity and its repeated nesting. Without a 
nonlinear element, any MLP system can be expressed by a 
perceptron relationship. Given a general Sigma-Pi network 
with the same neural structure, however, the input-output 
mapping provides two mechanisms for nonlinearities; nested 
sigmoid functions and product combinations. Removing the 
nonlinear activation function does not negate the networks 
ability to perform nonlinear mappings, but does result in an 
input-output relationship defined by a polynomial expansion, 
where the maximum order is defined by the product of the 
number of layers employed and the maximum Sigma-Pi order 
(assuming the same maximum order per layer). 

The effect of changing the number of neurons employed 
in a general second-order Sigma-Pi network was determined 
by repeating the classification task described above for a 
selection of second order Sigma-Pi structures. The Sigma- 
Pi network was trained using the same learning rate for each 
product term order [l], [lo], [ll],  but as in the MLP case, 
the learning rate is allowed to range from 0.1 to 1.0 in 
0.1 increments. The classification results are summarized in 
Table 111. Three characteristics are immediately apparent. First, 

TABLE I11 
STANDARD SECOND-ORDER SIGMA-PI NETWORK PERFORMANCE 

Network Type 9’0 Correct Iterations to Learning Rate 
Classifications Convergence 

1.3.6 SI - 3 0  540 - 320 0.60 

7.5,  6 41 - 28 450 - 338 0.50 

7,7.6 43 - 30 I I38 - 955 0.20 

I ,  10, 6 39 - 21 21.5 - 172 0.90 

7. 3. 3.6 29 163 0.90 

7.4.4.6 S6 - 40 318 - 187 0.80 

7.7,6,6 5 1  - 3 7  153 - I12 I 00 

the classification accuracy never approaches the level achieved 
by the standard MLP network. Second, although the Sigma-Pi 
network never reaches the generalization ability of the MLP, 
the performance generally peaks for a network using a lower 
neuron, hence weight count, than the peak MLP cases. Finally, 
the Sigma-Pi network is trained using fewer iterations than 
the MLP equivalent. 

V. TRAINING GENERAL SIGMA-PI NETWORKS 
USING ORDER SPECIFIC LEARNING RATES 

The experiments using a general Sigma-Pi network dis- 
cussed in Section IV indicate a poor level of performance 
with respect to the MLP architecture irrespective of the neuron 
count. Two characteristics worth emphasizing with respect to 
the Sigma-Pi network solution at this point are that 1) a large 
number of weights are employed and 2) learning is completed 
quickly. This is the over learning characteristic often observed 
in MLP networks employing too many neurons. A general 
Sigma-Pi network will always have “too many” weights, so 
a method is required to regulate the number of higher order 
terms employed. 

Within the BP framework, the rate of learning is controlled 
by the learning rate parameter which dictates the amount by 
which the present weight update influences the next weight 
state. Present implementations of Sigma-Pi networks employ 
the same learning rate across all the orders employed. As 
indicated in Section IV, the inclusion of product terms provides 
two mechanisms for nonlinearities within the network, where 
the descriptive power of product terms increases with increas- 
ing order. Consequently, the application of these nonlinearities 
can only be controlled adequately using differing learning 
rates and therefore, the authors propose that HO term learning 
rates should be significantly lower than those for the first 
order terms. This results in a bias to perform mappings using 
the lowest order terms wherever possible, with the aim of 
providing the most general description while avoiding over 
fitting of training data. 

To test this hypothesis the learning rate for first-order terms 
was set to 1.0 (the previously identified optimum), and the 
second-order learning rate varied between 0.1 and 2.6 using 
0.2 steps. For each learning rate combination, 20 network 
initializations were employed using the (7, 7, 6, 6 )  and (7, 
4, 4, 6) architectures. Fig. 6 summarizes the minimum RMS 
error for both experiments where the full test set data, Table I, 
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(7, 7, 6, 6) and (7, 4, 4, 6) Sigma-Pi network iterations to conver- 

is employed for evaluating the trained networks. Training was 
stopped when a maximum error of 0.1 was returned across 
training set patterns. Clearly classification accuracy is far better 
when the first order learning rate is in excess of the second. 
Predictably, a lower second order learning rate results in more 
iterations before convergence (Fig. 7). 

Optimum classification accuracy for the (7, 7, 6, 6) Sigma- 
Pi network is returned when the second-order learning rate is 
reduced to 0.07. This results in a peak classification accuracy 
3% greater than that for the equivalent MLP case (Table 
11). This also represents a 22% improvement over the best 
case classification accuracy returned by the single learning 
rate instance for the Sigma-Pi network (Table 111). CPU 
simulation time favors the MLP system, indicating the inherent 
computational overheads and much larger network size (127 
weights verses 617 weights using a (7, 7, 6, 6) network) 
resulting from general Si-Pi networks (Table IV). 

VI. DYNAMIC WEIGHT PRUNING IN 
GENERAL SIGMA-PI AND MLP NETWORKS 

It is now necessary to determine whether weight pruning 
results in the general Sigma-Pi network performing better than 
that for the MLP. Furthermore, to speed the pruning algorithm, 
the effect of permitting weights to be set to zero before they 

TABLE IV 
MLP AND MULTIPLE LEARNING RATE GENERAL SIGMA-PI 

NETWORK PERFORMANCE FOR ROTATION INVARIANCE PROBLEM 

Best Case’ Network Mean’ 
Topology 

iterations CPU time rms error Classification 
MLP 523 135 s 0.15 75 % 

Siema - Pi2 257 368 s 0.12 78 % 

I 20 network initialisations employed 

1 st order term learning rate : 1 .O; 2nd order term learning rate : 0.07 

satisfied the DWP criteria across the entire training set was 
investigated using the (7, 7, 6, 6) structure identified above. 

The weight pruning process of Section 111 was employed. 
Table V summarizes the learning and pruning algorithm pa- 
rameters used. Performance was evaluated in terms of three 
different categories: Weight requirement following conver- 
gence, iterations to convergence and CPU simulation time, and 
network generalization ability. For the remainder of the paper, 
unless otherwise indicated, the term “Sigma-Pi” network 
implies the use of multiple learning rates. “General” Sigma-Pi 
indicates that all the higher order weights are included, while 
sub-net Sigma-Pi indicates that the number of higher order 
terms per neuron is limited. 

A. Weight Requirement at Convergence 

There is close similarity between the total number of 
weights employed for pruned MLP and pruned general 
Sigma-Pi networks. Pruning removed 83% to 87% of the 
weights initially employed for the general Sigma-Pi network, 
hence indicating significant redundancy. In the case of the 
MLP network between 18% and 39% of the weights initially 
employed were removed. Following convergence, it was found 
that most second-order weights were employed in the first 
hidden layer, with only a few present in the output layer (true 
across all network initializations). 

B. Iterations to Convergence and CPU Simulation Time 

Two distinct effects are demonstrated between MLP and 
Sigma-Pi implementations irrespective of the DWP criteria 
employed. The Sigma-Pi case always converged using far 
fewer iterations (53%-58%) than the MLP case. The MLP, 
however, always required less simulation time (63%-73% of 
that for the Sigma-Pi case). The latter characteristic will be 
due to 1) the computational overhead involved in performing 
double precision floating point multiplications and 2) an in- 
crease in pruning activity resulting in more calls to the random 
number generator routine. 

C. Network Generalization Ability 

The peak performance for each network is employed as 
a measure of the network generalization ability (20 network 
initializations are employed for each structure). Fig. 8 depicts 
the classification accuracy, for MLP and general Sigma-Pi 
implementation, with and without pruning applied. In terms 
of classification accuracy the MLP network provides a 79.5% 
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TABLE V 
PRUNING AND LEARNING ALGORITHM PARAMETERS 

BP Parameters Dynamic Weight Pruning Parameters 

Leaming Rate 1st order 1 Stability threshold (n - learning rate; x - order) (nJ2.S.10 ‘ 
2nd order 0.07 Adaptive ZW threshold range 0.1 - 0.9 

Momentum before sparse net extraction 0.1 Max permitted DWPs per neuron per update 4 

with sparse net extracted 0.4 

Number of network initialisations 20 

for Sparse Net extraction 

Num. pattems (per iteration) over which a weight 6, 12, 18, 27, 36 
must satisfy the DWP criteria before setting to 

zero’ 

I equivalent to 16.33, SO, 75, 100% of the training set +I- 0.1s Max error 

for Training completion +I- 0.1 

for test set classification +I- 0.2 

I .Pruned S i g  PI  WPruned MLP Sig Pi 0 MLP 1 .Pruned Sig Pi B P r u n e d  MLP A Sig PI 0 MLP 

100, I 

95  

5 90  

3 85 

- 
80 

c 
7s 

70 
6 12 18 2 1  36 

Patterns over  which W Z  criteria sat i s f ied  

Fig. 8. Classification accuracy for MLP and general. 

accuracy across the four higher DWP criteria (i.e., when the 
weights that are set to zero satisfy the DWP criteria for greater 
than 33% of the training pattern set). This represents a 4.5% 
improvement above the best case MLP performance without 
pruning, indicating that the network architecture is already 
near optimal size. 

For the general Sigma-Pi implementation with pruning, a 
peak classification accuracy of 95.5% is returned when the 
lowest DWP criteria is employed (16% of patterns satisfy 
the DWP criteria per 36 patterns). Previously the general 
Sigma-Pi network returned 78% accuracy, consequently a 
17% improvement is returned. 

In terms of RMS error at convergence (for the test set 
data), then the best case MLP performance is returned for 
a DWP criteria of half the test set patterns. All the Rh4S 
errors, however, are nearly twice that for the general Sigma- 
Pi network, for any of the five DWP criteria. Fig. 9 compares 
the MLP and Sigma-Pi best case RMS errors as a function 
of DWP criteria. 

D. Summary 

Comparing the general Sigma-Pi network performance for 
networks trained with and without pruning results in a 14% to 
74% reduction in RMS error and a 9% to 16% improvement 
in classification accuracy, across the DWP criteria (Figs. 8 and 
9). Also of note, however, is that there is no increase in CPU 
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M 

0.07 1 
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6 1 2  1 8  21 36 
Patterns over  which W Z  criteria sat i s f ied  

Fig. 9. Rh4S error for MLP and general. 

TABLE VI 
SECOND ORDER TERM LEARNING RATES 

FOR SUB-NET SIGMA-PI NETWORK COUNTS. 

Max number of 2nd order terms 
per neuron 

2nd order term Leaming Rate 

14 (55%’.) 

7 (27%’) 

3 (12%1) 

0. IO  

0.15 

0.20 

’ % of second order weights included throughout network. 

time for either Sigma-Pi or MLP performance following the 
introduction of the pruning algorithm. 

VII. DYNAMIC WEIGHT PRUNING 
IN SUB-NET SIGMA-PI NETWORKS 

In this section the effect of only implementing a subset of 
the second-order weights in the Sigma-Pi network is evaluated 
(referred to as a sub-net Sigma-Pi network). This effectively 
makes the Sigma-Pi network practical to implement by limit- 
ing the number of higher order products employed. The effect 
of using 55%, 27% and 12% of the total second-order weight 
count is investigated (this corresponds to 14, seven and three 
second-order products per neuron). Following this reduction 
in the number of second-order weights employed it was found 
necessary to change the “optimal” learning rate for second- 
order terms (Table VI). All other learning parameters remained 
unchanged (Table V). 
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TABLE VI1 
COMPARISON BETWEEN SECOND ORDER TERM WEIGHT COUNTS 

2nd order term limit per neuron 2nd order weight count at 
convergence wrt pruned General 

Siema - Pi net solution 

3 weights I neuron 

7 weights I neuron 

14 weights I neuron 

87 % 

148 % 

143 % 

A. Weight Requirement at Convergence 

Sub-Net Sigma-Pi Performance: There is no significant 
variation between the weight counts returned by second- 
order weight limits of seven and 14 (97 weights typical). 
The second-order weight limit of three weights per neuron 
returns typically 90 weights, an 8% reduction in weight count 
with respect to the higher second order weight limits. As 
in the general Sigma-Pi case the majority of second-order 
weights included are contained within inputs to the first 
hidden layer. 

Comparison to General Sigma-Pi Network Performance: In 
terms of second order weights alone, Table VI1 indicates 
the mean weight counts taken across all simulations and 
normalized to the general Sigma-Pi network second order 
weight count. This shows that a tendency exists to include 
more second order terms by the sub-net implementation. 

B. Iterations to Convergence and CPU Simulation Time 

Given the previous observations regarding computational 
requirements, it is not surprising that sub-net implementations 
use more iterations to converge, but simulate faster than the 
general Sigma-Pi network. Table VI11 illustrates this effect 
by comparing the CPU time and iterations to convergence 
for pruned MLP, general Sigma-Pi, and the three sub-net 
Sigma-Pi networks. The comparison is performed using the 
mean figures for each network and averaging across the 
five DWP criteria. Table VI11 also contrasts the increase 
in CPU time and iterations to convergence with respect to 
the best case network performance, across the five network 
topologies. 

C. Network Generalization Ability 

The classification accuracy returned by the sub-net Sigma- 
Pi network employing a limit of three second-order terms, 
only achieved the level set by the pruned MLP system (i.e., 
79.5% for DWP criteria greater or equal to 12). Likewise this 
is generally true for the RMS error attained for the test data. 
Consequently, under the present weight significance test, this 
sub-Net Sigma-Pi implementation has failed to improve on 
the best case MLP performance. 

When limited to seven second-order terms, the classification 
accuracy betters that of the MLP system, peaking at 87.5% for 
the 18 DWP case (Fig. 10). At this second-order term limit the 
RMS error for the test set is generally half that of the pruned 
MLP network (Fig. 11). The sub-net Sigma-Pi network with 
a limit of 14 second order terms also betters the pruned MLP 
cases (Figs. 10 and 11). 

1 a ~ 6 c r i t  0 IZcrit  * 1 8 c r i t  3 - 2 7 c r i t  Q 3 6 c r i t  1 

I 
Gen Sig PI Sub Sig 14 Sub Sig 7 Sub Sig 3 MLP 

N e t w o r k  

Fig. 10. Pruned MLP, general and sub-net Sigma-Pi classification accuracy. 

I - - 6 c r i t  0 1 2 c r i t  * 1 8 c r i t  9 - 2 7 c r i t  Q 3 6 c r i t  I 

0 155 

0 1 3 5  

2 
O O  1 1 5  

3 
5 0 0 9 5  

E 

0 0 7 5  

0 0 5 5 5  
Gen Sig PI S u b  Sig 14 Sub Sig 7 Sub Sig 3 MLP 

Network 

Fig. 11. Pruned MLP, general and sub-net Sigma-Pi RMS error. 

D. Summary 

The sub-net Sigma-Pi cases do not reach the level of peak 
generalization performance attained by the pruned General 
Sigma-Pi implementation (Figs. 10 and 11 compare all three 
networks). The sub-net implementation, however, does provide 
a useful performance increase above that returned by the 
pruned MLP configuration. Furthermore, the sub-net case 
makes the implementation of product terms, where no a 
priori knowledge exists, a practical proposition in terms of 
initial network size (266 and 133 weights for the 14 and 7 
second order term sub-net implementations, respectively, as 
opposed to 617 weights in the general Sigma-Pi network) 
and simulation time (Table VIII). Better performance can be 
demonstrated for low HO weight restrictions by performing a 
directed product term search [21]-[23]. 

VIII. CONCLUSION 

This paper presents a framework for training Sigma-Pi net- 
works for nonbinary problems, where no a priori knowledge 
exists about the product terms required and without employing 
excessively large weight counts (the "traditional" reason for 
ignoring Sigma-Pi networks). This approach is summarized 
by the following set of recommendations: 

1) Use a nonpolarized product term equalization. 
2) Use order specific learning rates. 



902 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 4, JULY 1995 

TABLE VIII 
CPU AND ITERATIONS REQUIREMENT FOR THE THREE NETWORK STRUCTURES 

Network Type CPU Simulation Time Iterations to Convergence 

Time (mean) difference wrt increase wrt MLP iterations (mean) difference wrt increase wrf 
MLP Gen. Sigma - Pi Gen. Sigma - Pi 

Pruned MLP 137 s reference reference 546 + 250 84 % 

Pruned General Sigma - Pi 353 s + 216 s 158 % 296 reference reference 

Sub-Net Sigma-Pi : 14 terms 2.51 s + 114s 83 % 310 + 14 5 Yo 

Sub-Net Sigma-Pi : 7 terms 197 s + 6 0 s  44 % 363 + 67 26 % 

Sub-Net Sigma-Pi : 3 terms 147 s + 1 0 s  7 %  382 + 86 29 % 

Implement a subset of the total available product terms. 
Employ a dynamic weight pruning algorithm to re- 
move redundant weights, where the higher order terms 
removed are then replaced by terms not presently avail- 
able. 
Extract a sparsely connected network using nondynamic 
pruning, as convergence approaches. 
Alter momentum and learning rate as required at sparse 
network extraction, then complete training using BP 
alone. 

As a consequence of the different nonlinear mapping mech- 
anisms available, it has been shown that differing learning 
rates are necessary to control the rate of learning for each order 
employed. A drawback from employing multiple learning rates 
is that the selection of such terms is a nontrivial problem 
(here exhaustive simulation could be applied, which is not 
a practical proposition for large problems). Although as a rule 
of thumb, to return solutions biased toward the most simple 
solution, learning rates of HO terms should approximately 
be an order of magnitude lower than that for first order 
terms. 

To implement higher order systems without employing a 
priori knowledge about the problem, a randomly selected 
subset of the higher order weights is used. To employ a 
larger set of weights than defined by the initial random 
selection, redundant weights must be identified and replaced 
by alternative terms during the learning process. This is the 
function of the dynamic weight pruning framework which 
is based on two fundamental measures. The first identifies 
stability, the second weight significance. The stability measure 
is necessary to determine when the weight values, hence the 
neuron state, is representative of the present neural target 
function, as defined by the training process (this state may 
be transient in nature as the learning cycle progresses). The 
second, weight significance, identifies how significant a weight 
is to the objective function (local during DWP, global at sparse 
network extraction). 

The performance returned by the framework falls between 
that of the fully interconnected Sigma-Pi network, trained with 
pruning, and the optimally pruned MLP network. Significant 
reductions in the initial Sigma-Pi network requirements are 
demonstrated when using the sub-net implementation. This 
reduction in weight count results in faster simulation times 
for the sub-net Sigma-Pi implementation with respect to the 
fully interconnected version. Finally the classification ability 

demonstrated by the sub-net implementation is between that 
of the MLP and general Sigma-Pi networks. 

It should be recognized that the definition of our stability 
measure has an inherent disadvantage in selectivity when 
weights are replaced. The most recently introduced weights 
will have a smaller adaptation period than those present from 
initialization. Consequently, such terms are most likely to be 
removed should the neuron be re-selected for weight removal. 
This can be avoided by increasing the selectivity of the 
stability test to that of each weight by employing individual 
learning rates for each weight [18], 1311. Such a scheme, 
however, will introduce further user defined parameters (e.g., 
permitted range of learning rate variation) and generally make 
the weight significance estimation more difficult. A better 
approach, following identification of a redundant product term, 
would be to avoid perturbing the error surface altogether. To 
this end replacement product terms are incorporated by 

1) Selecting the best fitting product term from a pool of 
candidates. 

2) Initializing the weight and any neural threshold update, 
so as to minimize the local objective function (i.e., 
backpropagated error). 

/ 

3) Testing for over fitting of the training set. 
Such a system has been developed by the authors, as has the 
incorporation of an OBS weight significance test, within the 
dynamic weight pruning context [21]-[23]. Further evaluation 
of the framework performance is currently underway, with 
extensions to the framework for increasing complexity from a 
minimal MLP configuration as the network is trained. 
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